Z = 4

Mo $K\alpha$ radiation

 $\mu = 0.13 \text{ mm}^{-1}$

T = 113 (2) K $0.32 \times 0.30 \times 0.26 \text{ mm}$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Ethyl 4-(4-nitrophenyl)-2-(trifluoromethyl)pyrimido[1,2-a]benzimidazole-3carboxylate

Feng-Ling Yang,^a* Gong-Chun Li^a and Chang-Sheng Yao^b

^aCollege of Chemistry and Chemical Engineering, Xuchang University, Xuchang, Henan Province 461000, People's Republic of China, and ^bSchool of Chemistry and Chemical Engineering and Key Laboratory of Biotechnology for Medicinal Plants, Xuzhou Normal University, Xuzhou 221116, People's Republic of China Correspondence e-mail: actaeli@gmail.com

Received 11 November 2008; accepted 24 November 2008

Key indicators: single-crystal X-ray study; T = 113 K; mean σ (C–C) = 0.002 Å; R factor = 0.045; wR factor = 0.116; data-to-parameter ratio = 15.9.

In the title compound, $C_{20}H_{13}F_3N_4O_4$, the fused pyrimido[1,2a]benzimidazole ring system is nearly planar, with a maximum deviation from the mean plane of 0.126 (1) Å. Molecules are linked by $C-H\cdots N$ and $C-H\cdots O$ hydrogen bonds and by π - π interactions with interplanar distances of 3.2661 (6) and 3.2775 (6) Å.

Related literature

For the bioactivity of benzo[4,5] imidazo[1,2-a]-pyrimidine derivatives, see: Abdel-Hafez (2007); Cheung et al. (2002); Nunes, Zhu, Amouzegh et al. (2005); Nunes, Zhu, Ermann et al. (2005). For the bioactivity of organofluorine compounds, see: Hermann et al. (2003); Ulrich (2004).

 NO_2

Experimental

Crystal data $C_{20}H_{13}F_3N_4O_4$

 $M_r = 430.34$

CF₃

COOC₂H₅

Monoclinic, PZ_1/c	
a = 8.4075 (5) Å	
b = 26.6904 (14) Å	
c = 9.0559 (5) Å	
$\beta = 111.027 \ (2)^{\circ}$	
V = 1896.82 (18) Å ³	

Data collection

Rigaku Saturn diffractometer	18499 measured reflections
Absorption correction: multi-scan	4492 independent reflections
(CrystalClear; Rigaku/MSC,	3911 reflections with $I > 2\sigma(I)$
2002)	$R_{\rm int} = 0.039$
$T_{\min} = 0.961, \ T_{\max} = 0.968$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.045$	282 parameters
$wR(F^2) = 0.116$	H-atom parameters constrained
S = 1.11	$\Delta \rho_{\rm max} = 0.34 \text{ e} \text{ Å}^{-3}$
4492 reflections	$\Delta \rho_{\rm min} = -0.22 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} C12 - H12 \cdots N3^{i} \\ C16 - H16 \cdots O3^{ii} \end{array}$	0.95 0.95	2.41 2.55	3.2987 (18) 3.2096 (18)	156 127
0 (1)		. 1 (")	. 3 . 1	

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) x, $-y + \frac{3}{2}$, $z + \frac{1}{2}$.

Data collection: CrystalClear (Rigaku/MSC, 2002); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors thank the Natural Science Foundation of Henan Province, China (grant No. 082300420110) and the Natural Science Foundation of Henan Province Eduation Department, China (grant No. 2007150036) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2169).

References

Abdel-Hafez, A. A. M. (2007). Arch. Pharm. Res. 30, 678-684.

Cheung, M., Harris, P. A., Hasegawa, M., Ida, S., Kano, K., Nishigaki, N., Sato, H., Veal, J. M., Washio, Y. & West, R. I. (2002). WO Patent No. 2 002 044 156.

Hermann, B., Erwin, H. & Hansjorg, K. (2003). US Patent No. 2 003 176 284. Nunes, J. J., Zhu, X. T., Amouzegh, P., Ghiron, C., Johnston, D. N. & Power, E.

C. (2005). WO Patent No. 2 005 009 443. Nunes, J. J., Zhu, X. T., Ermann, M., Ghiron, C., Johnston, D. N. & Saluste, C.

G. P. (2005). WO Patent No. 2 005 021 551.

Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Ulrich, H. (2004). US Patent No. 2 004 033 897.

Acta Cryst. (2008). E64, o2469 [doi:10.1107/S160053680803941X]

Ethyl 4-(4-nitrophenyl)-2-(trifluoromethyl)pyrimido[1,2-a]benzimidazole-3-carboxylate

F.-L. Yang, G.-C. Li and C.-S. Yao

Comment

Among the derivatives of the dihydropyrimidine, the derivatives of pyrimido[1,2-*a*]benzimidazole have been reported to have a variety of biological activities, such as antineoplastic activity (Abdel-Hafez, 2007), protein kinase inhibitor (Nunes, Zhu, Amouzegh *et al.*, 2005), T cell activation (Nunes, Zhu, Ermann *et al.*, 2005), TIE-2 and/or VEGFR2 inhibitory activities (Cheung *et al.*, 2002). Besides, compounds that contain fluorine have special bioactivity, for example, flumioxazin is a widely used herbicide (Hermann *et al.*, 2003; Ulrich, 2004). This led us to pay much attention to the synthesis and bioactivity of these important fused perfluoroalkylated heterocyclic compounds. To further study the relationship between the structure and bioactivity, we synthesised series of derivatives of benzo[4,5] pyrimido[1,2-*a*]benzimidazole. Here we report the crystal structure of the title compound, (I).

In the title molecule (Fig.1), the fused ring are near planar, for the dihedral angle between the phenyl ring/imidazole ring/pyrimidine ring are 3.68 (9) and 3.65 (8)°, respectively. The conformation of the attachment of the phenyl ring to the fused ring is described by the torsion angle of N2-C2-C11-C16 of 123.17 (14)°.

The crystal packing is stabilized by C—H···N and C—H···O intermolecular hydrogen bond (Table 1, Fig. 2). In addition, there are the intermolecular π - π stacking interacions between the two neighbouring parallel imidazole rings(symmetry code: 1-x,1-y,1-z; centroid-to-centroid distance: 3.3386 (9)Å, plane-plane distance: 3.2661 (6)Å, displacement distance: 0.692Å) and phenyl rings (C5-C10, symmetry code: -x,1-y,1-z; centroid-to-centroid distance: 3.2775 (6)Å, displacement distance: 2.262Å) in the title compound.

Experimental

The title compound was synthesized by the reaction of 4-nitrobenzaldehyde (1 mmol), ethyl 4,4,4-trifluoro-3-oxobutanoate (1 mmol) and 1*H*-benzo[*d*]imidazol-2-amine (1 mmol) in 3-butyl-1-methyl-1H- imidazol-3-ium chloride (1.5 mL) at 363 K for a certain time (monitered by TLC). After cooling, the reaction mixture was washed with water and recrystallized from ethanol, to obtain single crystals suitable for X-ray diffraction.

Refinement

H atoms were placed in calculated positions (C-H = 0.95–0.99 Å) and included in the final cycles of refinement using a riding model, with $U_{iso}(H) = 1.2U_{eq}$ (parent atom).

Figures

Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Fig. 2. The packing diagram of the title compound. Intermolecular hydrogen bonds are shown as dashed lines.

Ethyl 4-(4-nitrophenyl)-2-(trifluoromethyl)pyrimido[1,2-a]benzimidazole- 3-carboxylate

Crystal data	
$C_{20}H_{13}F_3N_4O_4$	$F_{000} = 880$
$M_r = 430.34$	$D_{\rm x} = 1.507 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 4213 reflections
a = 8.4075 (5) Å	$\theta = 2.3 - 27.9^{\circ}$
<i>b</i> = 26.6904 (14) Å	$\mu = 0.13 \text{ mm}^{-1}$
c = 9.0559 (5) Å	T = 113 (2) K
$\beta = 111.027 \ (2)^{\circ}$	Block, orange
$V = 1896.82 (18) \text{ Å}^3$	$0.32 \times 0.30 \times 0.26 \text{ mm}$
Z = 4	

Data collection

Rigaku Saturn diffractometer	4492 independent reflections
Radiation source: rotating anode	3911 reflections with $I > 2\sigma(I)$
Monochromator: confocal	$R_{\rm int} = 0.039$
Detector resolution: 7.31 pixels mm ⁻¹	$\theta_{\text{max}} = 27.9^{\circ}$
T = 113(2) K	$\theta_{\min} = 2.5^{\circ}$
ω scans	$h = -11 \rightarrow 11$
Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2002)	$k = -34 \rightarrow 35$
$T_{\min} = 0.961, T_{\max} = 0.968$	$l = -11 \rightarrow 11$
18499 measured reflections	

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.045$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0565P)^{2} + 0.3435P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
$wR(F^2) = 0.116$	$(\Delta/\sigma)_{\rm max} = 0.001$
<i>S</i> = 1.11	$\Delta \rho_{max} = 0.35 \text{ e} \text{ Å}^{-3}$
4492 reflections	$\Delta \rho_{\rm min} = -0.22 \text{ e } \text{\AA}^{-3}$
282 parameters	Extinction correction: SHELXL97 (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Primary atom site location: structure-invariant direct	Extinction coefficient: 0.0129 (15)

methods

Secondary atom site location: difference Fourier map

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
F1	0.84705 (13)	0.60521 (4)	0.95949 (11)	0.0426 (3)
F2	0.69893 (13)	0.67273 (4)	0.89880 (11)	0.0385 (3)
F3	0.89019 (12)	0.65773 (4)	0.79846 (11)	0.0409 (3)
01	0.62940 (15)	0.71967 (4)	0.55129 (14)	0.0356 (3)
O2	0.75651 (13)	0.66746 (4)	0.43224 (12)	0.0274 (2)
O3	0.21549 (16)	0.71512 (4)	-0.24329 (13)	0.0346 (3)
O4	0.26759 (14)	0.64080 (4)	-0.30905 (12)	0.0308 (3)
N1	0.57725 (14)	0.56861 (4)	0.74106 (13)	0.0219 (3)
N2	0.37814 (14)	0.56650 (4)	0.47093 (13)	0.0189 (2)
N3	0.37200 (15)	0.50437 (4)	0.64198 (13)	0.0229 (3)
N4	0.26160 (15)	0.67171 (4)	-0.21060 (14)	0.0223 (3)
C1	0.44825 (17)	0.54571 (5)	0.62568 (15)	0.0202 (3)
C2	0.45006 (17)	0.60793 (5)	0.43043 (15)	0.0191 (3)
C3	0.57796 (17)	0.63165 (5)	0.54926 (16)	0.0209 (3)
C4	0.63487 (17)	0.61029 (5)	0.70372 (15)	0.0215 (3)
C5	0.24130 (17)	0.53536 (5)	0.38824 (16)	0.0204 (3)

C6	0.24395 (18)	0.49711 (5)	0.49625 (17)	0.0220 (3)
C7	0.12231 (19)	0.45881 (5)	0.45180 (18)	0.0266 (3)
H7	0.1244	0.4322	0.5222	0.032*
C8	-0.00046 (19)	0.46102 (6)	0.30259 (18)	0.0293 (3)
H8	-0.0837	0.4353	0.2694	0.035*
C9	-0.0057 (2)	0.50043 (6)	0.19808 (18)	0.0293 (3)
Н9	-0.0946	0.5011	0.0973	0.035*
C10	0.11445 (18)	0.53821 (6)	0.23755 (16)	0.0255 (3)
H10	0.1112	0.5647	0.1664	0.031*
C11	0.39418 (17)	0.62415 (5)	0.26248 (15)	0.0200 (3)
C12	0.41635 (18)	0.59172 (5)	0.15022 (16)	0.0223 (3)
H12	0.4605	0.5590	0.1804	0.027*
C13	0.37390 (18)	0.60735 (5)	-0.00523 (16)	0.0218 (3)
H13	0.3883	0.5857	-0.0828	0.026*
C14	0.30986 (17)	0.65537 (5)	-0.04460 (15)	0.0204 (3)
C15	0.28857 (18)	0.68848 (5)	0.06432 (16)	0.0235 (3)
H15	0.2457	0.7213	0.0337	0.028*
C16	0.33160 (18)	0.67247 (5)	0.21975 (16)	0.0226 (3)
H16	0.3184	0.6945	0.2970	0.027*
C17	0.65622 (18)	0.67848 (5)	0.51235 (16)	0.0246 (3)
C18	0.8334 (2)	0.71015 (6)	0.3818 (2)	0.0351 (4)
H18A	0.8954	0.7317	0.4735	0.042*
H18B	0.7445	0.7305	0.3032	0.042*
C19	0.9537 (2)	0.68897 (7)	0.3101 (2)	0.0422 (4)
H19A	1.0469	0.6716	0.3918	0.063*
H19B	1.0003	0.7162	0.2652	0.063*
H19C	0.8928	0.6653	0.2263	0.063*
C20	0.76917 (19)	0.63640 (6)	0.84092 (17)	0.0284 (3)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
F1	0.0462 (6)	0.0400 (6)	0.0245 (5)	0.0004 (5)	-0.0079 (4)	0.0038 (4)
F2	0.0469 (6)	0.0361 (5)	0.0305 (5)	-0.0008 (4)	0.0115 (4)	-0.0114 (4)
F3	0.0288 (5)	0.0560 (6)	0.0329 (5)	-0.0142 (4)	0.0050 (4)	-0.0033 (4)
O1	0.0452 (7)	0.0252 (6)	0.0389 (6)	-0.0043 (5)	0.0181 (5)	-0.0062 (5)
O2	0.0309 (6)	0.0254 (5)	0.0283 (5)	-0.0041 (4)	0.0135 (5)	0.0027 (4)
O3	0.0516 (7)	0.0228 (5)	0.0276 (6)	0.0064 (5)	0.0121 (5)	0.0081 (4)
O4	0.0405 (6)	0.0326 (6)	0.0199 (5)	0.0078 (5)	0.0116 (5)	0.0013 (4)
N1	0.0222 (6)	0.0260 (6)	0.0176 (5)	0.0036 (5)	0.0073 (5)	0.0012 (5)
N2	0.0210 (6)	0.0200 (5)	0.0162 (5)	0.0018 (4)	0.0073 (4)	0.0010 (4)
N3	0.0240 (6)	0.0228 (6)	0.0238 (6)	0.0041 (5)	0.0109 (5)	0.0038 (5)
N4	0.0244 (6)	0.0225 (6)	0.0202 (6)	0.0011 (5)	0.0082 (5)	0.0039 (5)
C1	0.0220 (6)	0.0225 (6)	0.0183 (6)	0.0055 (5)	0.0097 (5)	0.0035 (5)
C2	0.0215 (6)	0.0188 (6)	0.0190 (6)	0.0026 (5)	0.0097 (5)	0.0006 (5)
C3	0.0227 (7)	0.0219 (7)	0.0182 (6)	0.0010 (5)	0.0074 (5)	0.0002 (5)
C4	0.0216 (6)	0.0247 (7)	0.0180 (6)	0.0037 (5)	0.0069 (5)	-0.0001 (5)
C5	0.0203 (6)	0.0208 (6)	0.0217 (7)	0.0003 (5)	0.0096 (5)	-0.0024 (5)

C6	0.0231 (7)	0.0210 (7)	0.0248 (7)	0.0034 (5)	0.0122 (6)	0.0003 (5)
C7	0.0299 (7)	0.0210 (7)	0.0352 (8)	0.0005 (6)	0.0193 (6)	-0.0006 (6)
C8	0.0281 (7)	0.0271 (7)	0.0365 (8)	-0.0064 (6)	0.0163 (7)	-0.0085 (6)
C9	0.0279 (8)	0.0344 (8)	0.0254 (7)	-0.0046 (6)	0.0093 (6)	-0.0053 (6)
C10	0.0262 (7)	0.0285 (7)	0.0216 (7)	-0.0021 (6)	0.0084 (6)	-0.0012 (6)
C11	0.0199 (6)	0.0219 (6)	0.0176 (6)	-0.0010 (5)	0.0062 (5)	0.0003 (5)
C12	0.0269 (7)	0.0196 (6)	0.0209 (7)	0.0032 (5)	0.0090 (6)	0.0019 (5)
C13	0.0261 (7)	0.0212 (7)	0.0198 (6)	0.0021 (5)	0.0102 (5)	0.0010 (5)
C14	0.0205 (6)	0.0232 (7)	0.0166 (6)	-0.0010 (5)	0.0057 (5)	0.0028 (5)
C15	0.0273 (7)	0.0194 (6)	0.0227 (7)	0.0028 (5)	0.0079 (6)	0.0022 (5)
C16	0.0261 (7)	0.0215 (7)	0.0198 (7)	0.0019 (5)	0.0077 (6)	-0.0008 (5)
C17	0.0248 (7)	0.0276 (7)	0.0191 (6)	-0.0024 (6)	0.0051 (6)	-0.0003 (5)
C18	0.0380 (9)	0.0335 (8)	0.0348 (9)	-0.0097 (7)	0.0142 (7)	0.0076 (7)
C19	0.0411 (10)	0.0533 (11)	0.0367 (9)	-0.0086 (8)	0.0195 (8)	0.0058 (8)
C20	0.0301 (8)	0.0311 (8)	0.0205 (7)	-0.0003 (6)	0.0047 (6)	-0.0005 (6)

Geometric parameters (Å, °)

1.3304 (17)	C7—C8	1.376 (2)
1.3365 (17)	С7—Н7	0.9500
1.3372 (18)	C8—C9	1.405 (2)
1.2004 (18)	С8—Н8	0.9500
1.3277 (17)	C9—C10	1.381 (2)
1.4617 (17)	С9—Н9	0.9500
1.2239 (15)	C10—H10	0.9500
1.2289 (15)	C11—C16	1.3941 (19)
1.3056 (18)	C11—C12	1.3978 (18)
1.3522 (18)	C12—C13	1.3865 (18)
1.3719 (17)	C12—H12	0.9500
1.3989 (17)	C13—C14	1.3864 (19)
1.4235 (16)	С13—Н13	0.9500
1.3108 (18)	C14—C15	1.3830 (19)
1.3851 (19)	C15—C16	1.3890 (19)
1.4755 (16)	С15—Н15	0.9500
1.3729 (19)	С16—Н16	0.9500
1.4861 (18)	C18—C19	1.495 (2)
1.4248 (18)	C18—H18A	0.9900
1.5049 (19)	C18—H18B	0.9900
1.516 (2)	С19—Н19А	0.9800
1.4004 (19)	С19—Н19В	0.9800
1.4084 (19)	С19—Н19С	0.9800
1.399 (2)		
115.89 (12)	C16—C11—C12	120.43 (12)
117.02 (12)	C16—C11—C2	120.19 (12)
133.83 (11)	C12-C11-C2	119.22 (12)
120.72 (11)	C13—C12—C11	119.95 (13)
105.42 (11)	C13—C12—H12	120.0
104.76 (11)	C11—C12—H12	120.0
123.49 (12)	C14—C13—C12	118.30 (12)
	$\begin{array}{c} 1.3304 (17) \\ 1.3365 (17) \\ 1.3372 (18) \\ 1.2004 (18) \\ 1.3277 (17) \\ 1.4617 (17) \\ 1.2239 (15) \\ 1.2289 (15) \\ 1.3056 (18) \\ 1.3522 (18) \\ 1.3522 (18) \\ 1.3719 (17) \\ 1.3989 (17) \\ 1.4235 (16) \\ 1.3108 (18) \\ 1.3851 (19) \\ 1.4755 (16) \\ 1.3729 (19) \\ 1.4861 (18) \\ 1.4248 (18) \\ 1.5049 (19) \\ 1.516 (2) \\ 1.4004 (19) \\ 1.4084 (19) \\ 1.399 (2) \\ 115.89 (12) \\ 117.02 (12) \\ 133.83 (11) \\ 120.72 (11) \\ 105.42 (11) \\ 104.76 (11) \\ 123.49 (12) \end{array}$	1.3304 (17) $C7-C8$ $1.3365 (17)$ $C7-H7$ $1.3372 (18)$ $C8-C9$ $1.2004 (18)$ $C8-H8$ $1.3277 (17)$ $C9-C10$ $1.4617 (17)$ $C9-H9$ $1.2239 (15)$ $C10-H10$ $1.2239 (15)$ $C11-C16$ $1.3056 (18)$ $C11-C12$ $1.3522 (18)$ $C12-C13$ $1.3719 (17)$ $C12-H12$ $1.3989 (17)$ $C13-C14$ $1.4235 (16)$ $C13-H13$ $1.3108 (18)$ $C14-C15$ $1.3729 (19)$ $C16-H16$ $1.4755 (16)$ $C15-H15$ $1.3729 (19)$ $C16-H16$ $1.4248 (18)$ $C18-H18A$ $1.5049 (19)$ $C19-H19A$ $1.4004 (19)$ $C19-H19A$ $1.4004 (19)$ $C19-H19B$ $1.4084 (19)$ $C19-H19C$ $1.399 (2)$ $C16-C11-C12$ $117.02 (12)$ $C16-C11-C12$ $117.02 (12)$ $C16-C11-C2$ $123.83 (11)$ $C12-C11$ $05.42 (11)$ $C13-C12-H12$ $105.42 (11)$ $C13-C12-H12$ $104.76 (11)$ $C11-C12-H12$ $123.49 (12)$ $C14-C13-C12$

O3—N4—C14	118.27 (11)	C14—C13—H13	120.9
O4—N4—C14	118.23 (11)	С12—С13—Н13	120.9
N3—C1—N1	125.63 (12)	C15—C14—C13	123.03 (12)
N3—C1—N2	113.11 (12)	C15—C14—N4	118.63 (12)
N1—C1—N2	121.23 (12)	C13—C14—N4	118.34 (12)
N2—C2—C3	117.29 (12)	C14—C15—C16	118.21 (13)
N2—C2—C11	120.05 (12)	C14—C15—H15	120.9
C3—C2—C11	122.61 (12)	C16—C15—H15	120.9
C2—C3—C4	118.54 (13)	C15—C16—C11	120.07 (13)
C2—C3—C17	119.40 (12)	C15—C16—H16	120.0
C4—C3—C17	122.05 (12)	C11-C16-H16	120.0
N1—C4—C3	124.75 (13)	O1—C17—O2	125.91 (14)
N1—C4—C20	114.58 (12)	O1—C17—C3	123.53 (13)
C3—C4—C20	120.66 (13)	O2—C17—C3	110.57 (12)
N2	132.99 (13)	O2—C18—C19	106.55 (13)
N2—C5—C6	104.70 (12)	O2-C18-H18A	110.4
C10—C5—C6	122.20 (13)	C19—C18—H18A	110.4
N3—C6—C7	127.89 (13)	O2-C18-H18B	110.4
N3—C6—C5	111.94 (12)	C19-C18-H18B	110.4
C7—C6—C5	120.13 (13)	H18A—C18—H18B	108.6
C8—C7—C6	117.67 (13)	С18—С19—Н19А	109.5
С8—С7—Н7	121.2	C18—C19—H19B	109.5
С6—С7—Н7	121.2	H19A—C19—H19B	109.5
С7—С8—С9	121.65 (14)	С18—С19—Н19С	109.5
С7—С8—Н8	119.2	H19A—C19—H19C	109.5
С9—С8—Н8	119.2	H19B—C19—H19C	109.5
C10—C9—C8	121.95 (14)	F1—C20—F2	107.24 (12)
С10—С9—Н9	119.0	F1—C20—F3	107.08 (12)
С8—С9—Н9	119.0	F2—C20—F3	107.02 (12)
C9—C10—C5	116.31 (13)	F1—C20—C4	112.34 (12)
С9—С10—Н10	121.8	F2—C20—C4	110.55 (12)
C5-C10-H10	121.8	F3—C20—C4	112.33 (12)
C6—N3—C1—N1	176.80 (12)	C7—C8—C9—C10	1.9 (2)
C6—N3—C1—N2	-1.36 (15)	C8—C9—C10—C5	-0.5 (2)
C4—N1—C1—N3	-178.44 (13)	N2-C5-C10-C9	-177.67 (14)
C4—N1—C1—N2	-0.42 (18)	C6—C5—C10—C9	-2.0 (2)
C2—N2—C1—N3	-175.64 (11)	N2—C2—C11—C16	123.17 (14)
C5—N2—C1—N3	2.61 (15)	C3—C2—C11—C16	-59.60 (18)
C2—N2—C1—N1	6.11 (18)	N2—C2—C11—C12	-61.32 (17)
C5—N2—C1—N1	-175.64 (11)	C3—C2—C11—C12	115.92 (15)
C5—N2—C2—C3	174.80 (13)	C16—C11—C12—C13	-0.8 (2)
C1—N2—C2—C3	-7.54 (18)	C2-C11-C12-C13	-176.33 (12)
C5—N2—C2—C11	-7.8 (2)	C11—C12—C13—C14	0.0 (2)
C1—N2—C2—C11	169.83 (11)	C12—C13—C14—C15	0.9 (2)
N2—C2—C3—C4	3.79 (18)	C12—C13—C14—N4	-178.87 (12)
C11—C2—C3—C4	-173.52 (12)	O3—N4—C14—C15	4.90 (19)
N2—C2—C3—C17	-177.54 (11)	O4—N4—C14—C15	-174.11 (13)
C11—C2—C3—C17	5.16 (19)	O3—N4—C14—C13	-175.37 (13)
C1—N1—C4—C3	-3.5 (2)	O4—N4—C14—C13	5.63 (18)

C1—N1—C4—C20	175.22 (12)	C13-C14-C15-C16	-0.8 (2)
C2—C3—C4—N1	1.9 (2)	N4-C14-C15-C16	178.91 (12)
C17—C3—C4—N1	-176.76 (13)	C14—C15—C16—C11	-0.1 (2)
C2—C3—C4—C20	-176.79 (12)	C12-C11-C16-C15	0.9 (2)
C17—C3—C4—C20	4.6 (2)	C2-C11-C16-C15	176.33 (13)
C2-N2-C5-C10	-8.5 (2)	C18—O2—C17—O1	-3.0 (2)
C1-N2-C5-C10	173.60 (14)	C18—O2—C17—C3	176.91 (12)
C2—N2—C5—C6	175.31 (13)	C2-C3-C17-O1	106.37 (17)
C1—N2—C5—C6	-2.60 (13)	C4—C3—C17—O1	-75.00 (19)
C1—N3—C6—C7	-178.26 (13)	C2—C3—C17—O2	-73.58 (16)
C1—N3—C6—C5	-0.43 (15)	C4—C3—C17—O2	105.05 (14)
N2-C5-C6-N3	1.99 (14)	C17—O2—C18—C19	174.18 (13)
C10-C5-C6-N3	-174.73 (12)	N1-C4-C20-F1	22.08 (18)
N2C5C7	-179.99 (12)	C3—C4—C20—F1	-159.12 (13)
C10—C5—C6—C7	3.3 (2)	N1—C4—C20—F2	-97.67 (14)
N3—C6—C7—C8	175.79 (13)	C3—C4—C20—F2	81.13 (16)
C5—C6—C7—C8	-1.88 (19)	N1—C4—C20—F3	142.87 (13)
C6—C7—C8—C9	-0.6 (2)	C3—C4—C20—F3	-38.33 (18)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
C12—H12···N3 ⁱ	0.95	2.41	3.2987 (18)	156
C16—H16···O3 ⁱⁱ	0.95	2.55	3.2096 (18)	127
Symmetry codes: (i) $-x+1$, $-y+1$, $-z+1$; (ii) x , $-y+3/2$	2, <i>z</i> +1/2.			

Fig. 2